
PHYSICAL REVIEW C, VOLUME 60, 034613
Angular momenta of even-even fragments in the neutronless fission of252Cf
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The recent advent of experimental techniques in which the dynamical characteristics of fission fragments are
determined more accurately prompted us to investigate the angular momentum acquired by fragments in a
model which describes the cold~neutronless! fission of 252Cf as the decay of a giant nuclear molecule. The
molecular configuration is a consequence of the interplay between the attractive nuclear part and the repulsive
Coulomb1nuclear forces. The basic idea of the present approach is to separate the radial~fission! modes
describing the decay of the molecule from the modes associated to transversal vibrations~bending! of the
fragments. The distance between the centers of the two fragments is fixed by the requirement that the energy
released in the fission reactionQ equals the sum of quantum zero energies of radial and transversal modes and
the total excitation energyE* . Using a semiclassical coupled channel formalism we computed the additional
angular momenta acquired by the fragments during their postscission motion, and found that the Coulomb
excitation accounts for less than 10% of the final spins.@S0556-2813~99!02609-6#

PACS number~s!: 25.85.Ca, 21.60.Gx, 24.75.1i, 25.70.De
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I. INTRODUCTION

The knowledge of the angular momentum distribution
primary fission fragments is important because it provid
information on the fissioning system at the scission po
The experimental and theoretical investigations carried ou
the past on theg rays assumed that the mechanism of an
lar momentum formation may be divided in two stag
@1–4#. In the first stage, which takes place at the sciss
configuration, the fragments acquire angular momentum
to the excitation of collective transversal degrees of freed
induced by the interplay between the nuclear and Coulo
forces. In the second stage an additional angular momen
will come up from the mutual Coulomb excitation. In th
paper we deal with both stages, for the limiting case of c
fission, i.e., when the total excitation energy does not exc
the neutron emission threshold.

Recently it has been advocated by us@5#, based on the
concept ofnuclear molecule@6#, that for fragments emitted
with almost no excitation energy, a molecular vibration
spectrum will show up as a consequence of small nona
fluctuations at scission. An equilibrium position in th
fragment-fragment distance coordinate can be achieved i
interplay between the Coulomb and the repulsive nuc
core on one hand and the attractive nuclear part on the o
hand will produce a potential bag. If such a pocket is not
shallow, dipole oscillations of the relative coordinate a
rotational vibrations like bending and wriggling can occ
@6#. These last two excitations take place perpendicularly
the fission axis and were predicted long time ago by Nix a
Swiatecki @7#. There were also predicted other rotation
modes like twisting and tilting@8# but we shall not treat them
in the present work.

In last time experimental data on the spin distribution
fission fragments were made available, especially thro
the use of large arrays of high-resolution gamma detect
The first data on rotational states population in cold fission
0556-2813/99/60~3!/034613~6!/$15.00 60 0346
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252Cf were presented in Ref.@9#. Recent measurements o
the multipleg rays emitted by different pairs of fragmen
formed in the spontaneous fission of252Cf were analyzed
using a two-dimensional matrix ofg2g coincidences@10#.
From here it was possible to extract the average angular
mentum for the primary fission fragments as a function
the neutron multiplicity for the Mo-Ba and Zr-Ce charg
splits of 252Cf. The fission mode corresponding to zero ne
trons emitted was supposed to be of adiabatic nature in v
of the smaller excitation energy involved in it@11#.

In this paper we foccus on the study of the neutronl
case employing a model which describes the fissioning s
tem at the scission point as two coupled one-dimensio
oscillators performing only bending and wriggling vibration
around the equilibrium position which is chosen to cor
spond to both fragments having their symmetry axes align
The stiffness constant is derived from the expansion of
heavy-ion potential up to second order in the angular de
tion. For a fixed amount of total excitation energy one e
ploys a different set of deformation parameters, provided
whole excitation energy is stored in deformation. In this w
we were able to compute the average angular momentum
the fragments at scission for zero or very small excitat
energies.

Before discussing the obtained results in the light of
most recent reported experimental data we compute
change in angular momentum due to the Coulomb excita
~coulex! using a semiclassical model which includes also
shape dynamics.

II. GIANT MOLECULE SCENARIO

In order to describe the molecular state formed at sciss
we adopt an improved version of the receipt proposed
Rasmussenet al. @2#. The present formalism is extended
the case of two deformed nuclei, with finite-size effects a
diffusivity taken into account. Also care has been taken
©1999 The American Physical Society13-1
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the conservation of total angular momentum.
The interaction between the two deformed nucleiV(R) is

the sum of a short-range nuclear interactionVN(R) and the
long-range CoulombVC(R) parts. It can be calculated as th
double folding integral of ground state one-body densit
r1(2)(r) of heavy ions as follows:

V~R!5E dr1E dr2 r1~r1!r2~r2!v~s!. ~1!

In previous papers we employed the M3YNN effective in-
teraction for the nuclear part ofv @12–14# and we computed
the WKB penetrabilities for the binary and ternary cold fi
sion of 252Cf, when only the region in the vicinity of the
barrier is important. However, the M3Y double-folded p
tential is not taking into account two major factors — t
density dependence of theNN interaction and the Pauli prin
ciple, which are important at distances corresponding to
overlap of the nuclear volumes. This potential is charac
ized by a strong, unphysical attraction of a few thousand
MeV inside the nucleus. To accommodate a molecular mo
with the potential used in the calculations one need a re
sive core which would prevent the reabsorbtion of the ligh
fragment by the heavier one. A double folding potent
based on the effective Skyrme interaction is a good cho
for a decaying giant molecule or dinuclear system@15,16#, in
view of its similarities with the interatomic potentials used
the physics of the molecule@17#. Thus the nuclear potentia
between two heavy ions contains an attractive part an
repulsive one. Neglecting the spin dependence, it can
written as

VN~R!5C0H F in2Fex

r00
„~r1

2* r2!~R!1~r1* r2
2!~R!…

1Fex~r1* r2!~R!J , ~2!

where * denotes the convolution of two functionsf and g,
i.e., (f * g)(x)5* f (x8)g(x2x8)dx8. The constantC0 and
the dimensionless parametersF in ,Fex are given in Ref.@15#.
To solve this integral we consider the inverse Fourier tra
form

VN~R!5E e2 iq•RṼN~q!dq, ~3!

where the Fourier transform of the local Skyrme poten
ṼN(q) can be casted in the form

ṼN~q!5C0H F in2Fex

r00
„r1

2̃~q!r̃2~2q!1 r̃1~q!r2
2̃~2q!…

1Fexr̃1~q!r̃2~q!J . ~4!

Here r̃(q) and r 2̃(q) are Fourier transforms of the nucleo
densitiesr(r) and squared nuclear densitiesr2(r). Expand-
ing the nucleon densities for axial-symmetric distributions
spherical harmonics we get
03461
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r~r!5(
l

rl~r !Yl0~u,0!. ~5!

Then

r̃~q!54p(
l

i lYl0~uq,0!E
0

`

r 2drrl~r ! j l~qr !, ~6!

r̃2~q!5A4p(
l

i l

l̂
Yl0~uq,0!

3 (
l8l9

l̂8l̂9~C0 0 0
ll8l9!2E

0

`

r 2drrl8~r !rl9~r ! j l~qr !.

~7!

Like in previous papers we take the one-body densities
both daughter and cluster as two-parameter Fermi distr
tions in the intrinsic frame for axial symmetric nuclei

r~r!5
r00

11exp„@r 2R~u!…/a#
. ~8!

Herer0050.17 fm23 and the diffusivitya is taken to be 0.5
fm for both fission fragments. We consider that the nuc
which compose the giant molecule are in their ground s
with known quadrupoleb2 and hexadecupole deformation
b4.

The most favorable configuration which leads to decay
the one in which the fragments symmetry axes are align
Moreover, we constrain the fragments to rotate only arou
an axis perpendicularly to the axis joining their cente
Then, the only angular collective variables left areu1 andu2,
i.e., the angles between the symmetry axes of the defor
fragments and the fission axis. This assumption is justifi
experimentally by the small forward anisotropy of the ang
lar distribution of promptg radiation.

Together with the above approximations we consider a
that the nuclei, building-up the molecule, does not performb
or g vibrations. This assumption is based on the fact t
before scission the interfragment distanceR is rather an
ellongation coordinate which describes the stretching of
whole molecule.

The classical Hamiltonian function of the giant molecu
is taken in the form

H5
Lrel

2

2mR12
2

1Hcoll1H int , ~9!

where the first term represents the rotation of the whole m
ecule and the second,

Hcoll5
mṘ12

2

2
1Trot~u1 ,u2!1V~R12,u1 ,u2!, ~10!

describes the dynamics of the radial~stretching-fission! and
rotational collective variables. In the last formulaTrot is the
kinetic rotational energy of the fragments. Using the mu
3-2
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ANGULAR MOMENTA OF EVEN-EVEN FRAGMENTS IN . . . PHYSICAL REVIEW C60 034613
polar formalism presented in@18#, the total ~Coulomb
1nuclear! heavy-ion potential~1! reads

V~R12!5 (
l1 ,l2 ,l3 ,m

Vl1l2l3

m2m0 ~R12!Yl1m~u1,0!Yl22m~u2,0!.

~11!

For small nonaxial fluctuations~bendings!, the potential in
the neighborhood of the scission, or ‘‘molecular equili
rium’’ point R125Rc , gets a simplified form, provided w
keep terms up to the second power in angle:

V~Rc ,u1 ,u2!5V~Rc,0,0!1
1

2
C1u1

21
1

2
C2u2

21C12u1u2 .

~12!

HereC1 andC2 are the fragment bending stiffness, andC12
is the coupling constant. Explicitly, they are given by t
relations

C152
1

2 (
l1l2l3

l1~l111!Vl1l2l3

000 ~Rc!, ~13!

C252
1

2 (
l1l2l3

l2~l2 11!Vl1l2l3

000 ~Rc!, ~14!

C1252
1

4 (
l1l2l3

$l3~l311!2l1~l111!

2l2~l211!%Vl1l2l3

000 ~Rc!. ~15!

The last term in Eq.~9!, H int , is the sum of the intrinsic
Hamiltonians of the two nuclei forming the giant molecu
They include independent quasiparticle excitations and
sidual interactions between these quasiparticles. It was s
rated from the rest of the Hamiltonian by means of an ad
baticity assumption. This is supported by the fact that dur
fission, the molecular quantum numbers are not likely
change as the intrinsic ones.

Further, in the frame of the same Born-Oppenheim
adiabatic approximation@17#, the translational~stretching!
mode is separated from the rotational mode by fixing first
coordinateR125Rc , i.e., nailing downthe fission motion.

Thus, separating the intrinsic and relative translatio
motion from Eq.~10! we are left with a Hamiltonian ac
counting for the molecular rotational vibrations~bending!
modes:

H rv~Rc ,u1 ,u2!5Trot~u1 ,u2!1
Lrel

2

2mRc
2

1V~Rc ,u1 ,u2!.

~16!

Since the spin of the mother nucleus,252Cf, is zero, we have
a relation between the spins of the two fragments,L1 ,L2 and
the relative orbital angular momentumLrel

L11L21Lrel50. ~17!

The fragments being constrained to rotate in the same pl
in the above expression we consider only the componen
the angular momentum, perpendicular to the fission axis,
03461
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Lk52 i\]/]uk(k51,2). In this way the angular momentum
L and the deviationu are conjugate variables.

Putting all these together, the quantized form of our m
lecular Hamiltonian is casted in the following form:

H rv52
\2

2B 1

]2

]u1
2

2
\2

2B 2

]2

]u2
2

2
\2

mRc
2

]2

]u1]u2

1V~Rc ,u1 ,u2!, ~18!

whereB1(2) are related to the inertia moments of the fra
ments,J1(2) , by means of the formulas

B1(2)5
J1(2)mRc

2

J1(2)1mRc
2

. ~19!

In what follows we omit the constant termV(Rc,0,0) from
the molecular Hamiltonian~18!.

Introducing the following notations:

v1(2)5AC1(2)

B1(2)
, Kq5

C12

AB1B2

, Kp5
AB1B2

mRc
2

,

~20!

and passing to a new set of generalized coordinates (q,p)

qi5ABiu i , pi5
Li

ABi

, ~21!

we obtain a Hamiltonian for two one-dimensional oscillato
with qq andpp couplings

H rv5
1

2
p1

21
1

2
p2

21
1

2
v1

2q1
21

1

2
v2

2q2
21Kqq1q21Kpp1p2 .

~22!

The above Hamiltonian can be easily led to the canon
form by means of a unitary transformation:

H̃ rv5e2SH rve
S, ~23!

characterized by the exponent

S5 i ~h1q1p21h2q2p1!. ~24!

Requiring that

h152
Kpv1

21Kq

Kpv2
21Kq

h2 , ~25!

we obtain the diagonal form of the Hamiltonian in the ne
variables (q̃,p̃)

H̃ rv5
1

2B1
p̃1

21
1

2B2
p̃2

21
1

2
B1V1

2q̃1
21

1

2
B2V2

2q̃2
2 , ~26!

where the relation between the new frequenciesV i and the
old ones, if we choosev1.v2, is given by
3-3
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V1(2)
2 5

„Kq~v1
21v2

26AD!12Kpv1
2v2

2
…„Kp~v1

21v2
26AD!12Kq…

4~Kpv1
21Kq!~Kpv2

21Kq!
, ~27!
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D5~v1
22v2

2!214~Kpv1
21Kq!~Kpv2

21Kq!. ~28!

The eigenvalues of the HamiltonianH̃ are

En1n2
5\V1S n11

1

2D1\V2S n21
1

2D , ~29!

whereas the eigenfunctions will be given simply by produ
of one-dimensional harmonic oscillators wave functions

cn1n2
~ q̃1 ,q̃2!5cn1

~ q̃1!cn2
~ q̃2!. ~30!

III. ANGULAR MOMENTUM IN THE COLD FISSION

A. Predecay angular momentum

From Eq.~30! one can easily derive the expectation v
ues of the angular momentum operator for different mole
lar vibrational states. In the present approach a molec
vibrational state is defined by a couple of h.o. quantum nu
bers (n1 ,n2). In the case when only one of the fragments
deformed and the other is spherical one could define a si
vibrational quantum numberN5n1 or n2. Since in our treat-
ment the angular momentum operatorL52 i (]/]u) reduces
to the impulsep, conjugated to the angleu, the computation
of its matrix elements is straightforward in the Dirac-Fo
representation of the harmonic oscillator. The rms of the
gular momentum for each fragment in a molecular st
(n1 ,n2) is given by the expression

A^L1,2
2 &n1 ,n2

5
1

ũ1,2

An1,21
1

2
, ~31!

whereũ i51/ABiV i
The transversal angular vibrations that we treated in

preceding section can be reduced to more simple modes
bending~butterfly! or wriggling ~antibutterfly!. The first one
corresponds to rotations in opposite directions, whereas
the second mode, both fragments rotate in the same d
tion. Since the binary fission mode has a pole-pole confi
ration, which minimize the penetration probability, the sm
anglesu1 andu2 are approximately related@6#

u1'H p2
R2

R1
u2 : butterfly case

R2

R1
u2 : antibutterfly case.

~32!

The anglesu1,2 are measured in the anticlockwise sense w
respect to the fission axis.R1 andR2 are the fragments radi
03461
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along the symmetry axes. The stiffness and mass param
for these two modes are reading

Cb(w)5C11C2

R1
2

R2
2 7C12

R1

R2
, ~33!

1

Bb(w)
5

1

B1
1

1

B2
7

1

mRc
2

R1

R2
. ~34!

In all the above formulas the inertia moment of each fra
mentJi( i 51,2) was fitted to the experimental energy of t
21

1 state@19#.
In order to computeA^L2& we need to fixRc , i.e., the

interfragment distance. According to Eqs.~9! and ~16! the
energy release in the cold fission process is the sum of z
point energies of the ground-state configuration, i.e., the
tential energy at scissionV(Rc), for the radial~fission! de-
gree of freedom,En150,n250 for the transversal angula
vibrations~bending! degree of freedom, and the total excit
tion energyE* ,

Q5V~Rc!1E001E* . ~35!

The excitation energy comprises the contributions com
from the higher bending statesErv* and the quasiparticle ex
citations Eqp. Owing to the fact that the radial motion i
frozen at the molecular pointRc , the relative motion of the
nascent fission fragments, i.e., the prescission kinetic en
TKEpre50. This assumption is suitable for cold fission@20#.
The total excitation energy will be shared between the en
gies stored in deformationEdef and the prescission excitatio
energyEs* . Since in the spontaneous fission the dissipa
energyEs* }TKEpre, then the small amount of excitation en
ergy present in the system will be spent for deformation. W
suppose that the excitation energy is divided proportiona
to the mass of each fragment, i.e.,Ei* 5@Ai /(A11A2)#E*
and is stored only in the deformation of the fission partne
The induced deformations of each fragment can be dedu
straightforwardly if one appeals to the formula for the defo
mation energy in the pure liquid drop model~LDM ! @21#
with shell corrections computed according to the Myers a
Swiatecki receipt@22#

Edef~b!5DEsurf1DEcoul1DEshell. ~36!

In the above formulaDE5E(b)2E(bg.s.). The employed
version of shell correctionsDEshell, is not able to describe
shapes around the secondary minima of the fragments. S
in this paper we deal with very small excitation energie
bellow the neutron threshold, the aquired fragments de
mations are situated around the first minima.
3-4
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TABLE I. The molecular radiusRc , deformations of the fragmentsb2, and derived rms of their angula
momenta in the molecular vibrational ground state, at total excitation energiesE* 50, 2, and 4 MeV for the
splitting 148Ba1104Mo. In the last two columns we give the contribution to the final angular momenta du
the coulex in the case when at the starting of the trajectory calculation the fragments rotate in the sam
and are deflected at a positive angle with respect to the fission axis.

E* Rc A^L1
2&00 A^L2

2&00 DL1 DL2

Splitting ~MeV! ~fm! b2(148Ba) b2(104Mo) (\) (\) (\) (\)

148Ba1104Mo 0 13.29 0.236 0.349 4.76 4.62 0.21 0.31
Q5211.25 2 13.83 0.327 0.393 4.93 4.63 0.27 0.3

4 14.14 0.380 0.427 5.01 4.64 0.30 0.38
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SinceE00 depends parametrically onRc , solving the non-
linear equation~35! allows us to establish themolecular
equilibriumpoint. The values ofA^L2&00 are listed in Table I
for different excitation energies.

B. Postdecay angular momentum

After scission, the rotation of fragments is mainly infl
enced by the Coulomb excitation~coulex! @23#. In the case of
hot fission, which does not concern the present study,
neutron emission will have a non-negligible effect on t
fragments spins. In average each neutron reduces the
ment angular momenta by 0.5\.

The link between the stage when the fragments are sti
the molecular configuration and the stage when the
coulex starts to act is given by the tunneling process thro
the barrier. In the first stage the system is found on the
side of the barrier, whereas in the second, on the right o
We suppose that between these two stages no dissip
takes place and consequently, the spins of the fragments
not be affected by the motion in the classically forbidd
region. Once they arrive on the right side of the barrier
fragments will be subjected to the mutual Coulomb forc
The dynamics of the system will be given by the sa
Hamiltonian like in the molecular stage, see Eq.~10!, with
the difference that the nuclear forces are no longer cont
uting to the potential. We adopt a quasiclassical method
determine the asymptotic behavior of the rotational degr
of freedom@24#. First we have to solve a set of 6 first-ord
differential equations describing the Hamiltonain dynam
of the two fragments:

Q̇i5
]H

]Pi
, Ṗi52

]H

]Qi
, ~37!

where the generalized coordinatesQi(t) are given by the
interfragment distanceR, and the angular deviations of th
fragments from the fission axisu1,2, whereas the generalize
momentaPi(t) are the translational impulsePR and the an-
gular momenta of the fragmentsLu1,2

. One needs also to
establish the set of intial conditions for the above system.
R we take the second turning point, i.e., the fragments r
tive position for which the effective decay energyQ* 5Q
2E* intersects the barrier. In this case we can choosePR to
be zero. For the rotational variables att50 we take the re-
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sults given by the molecular model at the first turning poi
i.e., Lu1,2

are given by Eq.~31!, while u1,2 by

A^u1,2
2 &5S n1,21

1

2D \

A^L1,2
2 &

. ~38!

The contribution brought by the coulex, listed on the last t
columns of Table I, does not exceed 10%. This was
pected, because roughly, the acquired angular momentu
coulexDL is }sinu0 @23#, and the the rms angles given b
Eq. ~38!, are rather small in such a way that they do n
change significatively the final result. A scenario in whi
the coulex turns out to be important is conceivable only
large values of the initial angle, i.e., for significative nonax
distortions at scission. Such a conjecture has been evo
recently by Rasmussenet al. @4#, who supposed that at th
cold scission configuration, the rotational population has
most entirely spin zero, while the fragments symmetry a
are in average peaked off-axis at 0.5 radians. A justificat
for employing such a large angle was that the neck-snapp
process breaks the cylindrical shape symmetry of the fiss
ing system and the final neck is off axis.

Notice that the values ofDL1,2 from Table I were ob-
tained supposing that at the beginning of the accelerated
tion in the Coulomb field, the fragments rotate in the sa
direction. If they rotate in opposite direction then for on
fragment an angular momentum reduction will occur.

Note also that the asymptotic values are reached a
10220 s of postscission motion.

As one sees from Table I, the values obtained for
spins of the148Ba/104Mo splitting are ranging between 4.6\
and 5\ in the neutronless fission of252Cf. The available
experimental data@10# indicates a maximum average valu
of the spin^I g& of 4.060.5\, for the same splitting, which
obviously is in a very good agreement with our result.

IV. CONCLUSIONS

The aim of this paper was to investigate the formation
fragments angular momenta, in the frame of a cold fiss
model, very similar to the deformation dependent clus
model employed earlier for the description of yields dist
bution in the binary cold fragmentation@14#. The scission
configuration was pictured as a quasibound state of a g
molecule. In this model the angular momenta is carried
3-5
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the small nonaxial vibrations of the fissioning system wh
arise from the higher multipole components of the inter
tion potential. For the cold fission we consider only the co
tribution of the ground state of this vibrational spectrum, t
first excited state being located at'5 MeV.

The use of a molecular model for the cold fission was a
motivated by the putative existence of a giant trinuclear m
lecular state in the10Be-accompanied ternary fragmentatio
of 252Cf @25,26#.

In the case of pure cold fission (E* 50 MeV) the frag-
ments deformations are taken to be those correspondin
the first minima in the deformation energy landscape. Wh
the excitation energy increases, we recalculated the defo
tions by employing the LDM with a phenomenological r
ceipt for the shell corrections. When moving to even high
excitation energies, beyond the cold fission limit, a ca
which does not concern the present paper, a more reli
way to include the shell effects would be to appeal to
powerful method, like the Hartree-Fock with pairing corr
lations included.

We should also mention that in the present paper, like
the rest of the literature, the problem of angular moment
variation when crossing the classically forbidden region w
not considered. The occurrence of friction in this regi
could be a source of angular momentum damping@27#. In the
case of cold fission one may hope that the magnitude of s
s.
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forces will not affect the final result in a decisive way.
Very recently@28#, it was advocated that the fragmen

spins at scission could be accounted based on their intri
nuclear states and the uncertainty relation. Although this
proach has the merit of taking into account for the first tim
the microscopic structure of fragments in evaluating the fr
ments spins, it suffers of the insufficiency of including th
interaction between the fragments only by means of a res
ing strong space polarization along the fission axis. As
showed throughout this paper the mutual nuclear and C
lomb torques of the fission partners is the decisive facto
the formation of angular momentum in the cold fragmen
tion process. In the approach presented in this paper,
population of molecular states is a consequence of sm
non-axial fluctuations around the axial equilibrium positio
whereas in the postsnapping model of Ref.@28#, the angular
momentum comes from the orientation fluctuations of
strongly polarized system of two rotators.
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